julio 31, 2018 —
                                          
By Raymond Yuan, Software Engineering Intern
In this tutorial we will learn how to train a model that is able to win at the simple game CartPole using deep reinforcement learning. We’ll use tf.keras and OpenAI’s gym to train an agent using a technique known as Asynchronous Advantage Actor Critic (A3C). Reinforcement learning has been receiving an enormous amount of attention, but what is it exact…
 
  
class RandomAgent:
  """Random Agent that will play the specified game
    Arguments:
      env_name: Name of the environment to be played
      max_eps: Maximum number of episodes to run agent for.
  """
  def __init__(self, env_name, max_eps):
    self.env = gym.make(env_name)
    self.max_episodes = max_eps
    self.global_moving_average_reward = 0
    self.res_queue = Queue()
  def run(self):
    reward_avg = 0
    for episode in range(self.max_episodes):
      done = False
      self.env.reset()
      reward_sum = 0.0
      steps = 0
      while not done:
        # Sample randomly from the action space and step
        _, reward, done, _ = self.env.step(self.env.action_space.sample())
        steps += 1
        reward_sum += reward
      # Record statistics
      self.global_moving_average_reward = record(episode, 
                                                 reward_sum, 
                                                 0,
                                                 self.global_moving_average_reward,
                                                 self.res_queue, 0, steps)
      reward_avg += reward_sum
    final_avg = reward_avg / float(self.max_episodes)
    print("Average score across {} episodes: {}".format(self.max_episodes, final_avg))
    return final_avgpython a3c_cartpole.py — algorithm=random — max-eps=4000.  
class ActorCriticModel(keras.Model):
  def __init__(self, state_size, action_size):
    super(ActorCriticModel, self).__init__()
    self.state_size = state_size
    self.action_size = action_size
    self.dense1 = layers.Dense(100, activation='relu')
    self.policy_logits = layers.Dense(action_size)
    self.dense2 = layers.Dense(100, activation='relu')
    self.values = layers.Dense(1)
  def call(self, inputs):
    # Forward pass
    x = self.dense1(inputs)
    logits = self.policy_logits(x)
    v1 = self.dense2(inputs)
    values = self.values(v1)
    return logits, valuesclass MasterAgent():
  def __init__(self):
    self.game_name = 'CartPole-v0'
    save_dir = args.save_dir
    self.save_dir = save_dir
    if not os.path.exists(save_dir):
      os.makedirs(save_dir)
    env = gym.make(self.game_name)
    self.state_size = env.observation_space.shape[0]
    self.action_size = env.action_space.n
    self.opt = tf.train.AdamOptimizer(args.lr, use_locking=True)
    print(self.state_size, self.action_size)
    self.global_model = ActorCriticModel(self.state_size, self.action_size)  # global network
    self.global_model(tf.convert_to_tensor(np.random.random((1, self.state_size)), dtype=tf.float32))def train(self):
    if args.algorithm == 'random':
      random_agent = RandomAgent(self.game_name, args.max_eps)
      random_agent.run()
      return
    res_queue = Queue()
    workers = [Worker(self.state_size,
                      self.action_size,
                      self.global_model,
                      self.opt, res_queue,
                      i, game_name=self.game_name,
                      save_dir=self.save_dir) for i in range(multiprocessing.cpu_count())]
    for i, worker in enumerate(workers):
      print("Starting worker {}".format(i))
      worker.start()
    moving_average_rewards = []  # record episode reward to plot
    while True:
      reward = res_queue.get()
      if reward is not None:
        moving_average_rewards.append(reward)
      else:
        break
    [w.join() for w in workers]
    plt.plot(moving_average_rewards)
    plt.ylabel('Moving average ep reward')
    plt.xlabel('Step')
    plt.savefig(os.path.join(self.save_dir,
                             '{} Moving Average.png'.format(self.game_name)))
    plt.show()Memory class. This class will simply give us the functionality to keep track of our actions, rewards, states that occur per step.
class Memory:
  def __init__(self):
    self.states = []
    self.actions = []
    self.rewards = []
    
  def store(self, state, action, reward):
    self.states.append(state)
    self.actions.append(action)
    self.rewards.append(reward)
    
  def clear(self):
    self.states = []
    self.actions = []
    self.rewards = []run method from Thread. This will allow us to achieve the first A in A3C, asynchronous. First we’ll begin by instantiating a local model and setting up the specific training parameters.
class Worker(threading.Thread):
  # Set up global variables across different threads
  global_episode = 0
  # Moving average reward
  global_moving_average_reward = 0
  best_score = 0
  save_lock = threading.Lock()
  def __init__(self,
               state_size,
               action_size,
               global_model,
               opt,
               result_queue,
               idx,
               game_name='CartPole-v0',
               save_dir='/tmp'):
    super(Worker, self).__init__()
    self.state_size = state_size
    self.action_size = action_size
    self.result_queue = result_queue
    self.global_model = global_model
    self.opt = opt
    self.local_model = ActorCriticModel(self.state_size, self.action_size)
    self.worker_idx = idx
    self.game_name = game_name
    self.env = gym.make(self.game_name).unwrapped
    self.save_dir = save_dir
    self.ep_loss = 0.0run function. This will actually run our algorithm. We’ll run all the threads for a given global maximum number of episodes. This is where the third A, actor, of A3C comes into play. Our agent will “act” according to our policy function, becoming the actor while the action is judged by the “critic,” which is our value function. While this section of the code may seem dense, it really isn’t doing much. Within each episode, the code simply does:
args.update_freq) or the agent has reached a terminal state (has died), then update the global model with gradients computed from local modeldef run(self):
    total_step = 1
    mem = Memory()
    while Worker.global_episode < args.max_eps:
      current_state = self.env.reset()
      mem.clear()
      ep_reward = 0.
      ep_steps = 0
      self.ep_loss = 0
      time_count = 0
      done = False
      while not done:
        logits, _ = self.local_model(
            tf.convert_to_tensor(current_state[None, :],
                                 dtype=tf.float32))
        probs = tf.nn.softmax(logits)
        action = np.random.choice(self.action_size, p=probs.numpy()[0])
        new_state, reward, done, _ = self.env.step(action)
        if done:
          reward = -1
        ep_reward += reward
        mem.store(current_state, action, reward)
        if time_count == args.update_freq or done:
          # Calculate gradient wrt to local model. We do so by tracking the
          # variables involved in computing the loss by using tf.GradientTape
          with tf.GradientTape() as tape:
            total_loss = self.compute_loss(done,
                                           new_state,
                                           mem,
                                           args.gamma)
          self.ep_loss += total_loss
          # Calculate local gradients
          grads = tape.gradient(total_loss, self.local_model.trainable_weights)
          # Push local gradients to global model
          self.opt.apply_gradients(zip(grads,
                                       self.global_model.trainable_weights))
          # Update local model with new weights
          self.local_model.set_weights(self.global_model.get_weights())
          mem.clear()
          time_count = 0
          if done:  # done and print information
            Worker.global_moving_average_reward = \
              record(Worker.global_episode, ep_reward, self.worker_idx,
                     Worker.global_moving_average_reward, self.result_queue,
                     self.ep_loss, ep_steps)
            # We must use a lock to save our model and to print to prevent data races.
            if ep_reward > Worker.best_score:
              with Worker.save_lock:
                print("Saving best model to {}, "
                      "episode score: {}".format(self.save_dir, ep_reward))
                self.global_model.save_weights(
                    os.path.join(self.save_dir,
                                 'model_{}.h5'.format(self.game_name))
                )
                Worker.best_score = ep_reward
            Worker.global_episode += 1
        ep_steps += 1
        time_count += 1
        current_state = new_state
        total_step += 1
    self.result_queue.put(None)def compute_loss(self,
                   done,
                   new_state,
                   memory,
                   gamma=0.99):
    if done:
      reward_sum = 0.  # terminal
    else:
      reward_sum = self.local_model(
          tf.convert_to_tensor(new_state[None, :],
                               dtype=tf.float32))[-1].numpy()[0]
    # Get discounted rewards
    discounted_rewards = []
    for reward in memory.rewards[::-1]:  # reverse buffer r
      reward_sum = reward + gamma * reward_sum
      discounted_rewards.append(reward_sum)
    discounted_rewards.reverse()
    logits, values = self.local_model(
        tf.convert_to_tensor(np.vstack(memory.states),
                             dtype=tf.float32))
    # Get our advantages
    advantage = tf.convert_to_tensor(np.array(discounted_rewards)[:, None],
                            dtype=tf.float32) - values
    # Value loss
    value_loss = advantage ** 2
    # Calculate our policy loss
    actions_one_hot = tf.one_hot(memory.actions, self.action_size, dtype=tf.float32)
    policy = tf.nn.softmax(logits)
    entropy = tf.reduce_sum(policy * tf.log(policy + 1e-20), axis=1)
    policy_loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=actions_one_hot,
                                                             logits=logits)
    policy_loss *= tf.stop_gradient(advantage)
    policy_loss -= 0.01 * entropy
    total_loss = tf.reduce_mean((0.5 * value_loss + policy_loss))
    return total_losspython a3c_cartpole.py — train.
 def play(self):
    env = gym.make(self.game_name).unwrapped
    state = env.reset()
    model = self.global_model
    model_path = os.path.join(self.save_dir, 'model_{}.h5'.format(self.game_name))
    print('Loading model from: {}'.format(model_path))
    model.load_weights(model_path)
    done = False
    step_counter = 0
    reward_sum = 0
    try:
      while not done:
        env.render(mode='rgb_array')
        policy, value = model(tf.convert_to_tensor(state[None, :], dtype=tf.float32))
        policy = tf.nn.softmax(policy)
        action = np.argmax(policy)
        state, reward, done, _ = env.step(action)
        reward_sum += reward
        print("{}. Reward: {}, action: {}".format(step_counter, reward_sum, action))
        step_counter += 1
    except KeyboardInterrupt:
      print("Received Keyboard Interrupt. Shutting down.")
    finally:
      env.close()python a3c_cartpole.py once you’ve trained your model.
 We should see a score converged with scores >200. The game is defined as being “solved” as getting average reward of 195.0 over 100 consecutive trials.
We should see a score converged with scores >200. The game is defined as being “solved” as getting average reward of 195.0 over 100 consecutive trials.
 
 
julio 31, 2018
 —
                                  
By Raymond Yuan, Software Engineering Intern
In this tutorial we will learn how to train a model that is able to win at the simple game CartPole using deep reinforcement learning. We’ll use tf.keras and OpenAI’s gym to train an agent using a technique known as Asynchronous Advantage Actor Critic (A3C). Reinforcement learning has been receiving an enormous amount of attention, but what is it exact…