jūlijs 02, 2018 —
Posted by Zaid Alyafeai
We will create a simple tool that recognizes drawings and outputs the names of the current drawing. This app will run directly on the browser without any installations. We will use Google Colab for training the model, and we will deploy it on the browser using TensorFlow.js.
Code and DemoFind the live demo and the code on GitHub. Also make sure to test the notebook on Googl…
A subset of the classes |
The pipeline |
import os
import glob
import numpy as np
from tensorflow.keras import layers
from tensorflow import keras
import tensorflow as tf
[N,784]
where N
is the number of of the images for that particular class. We first download the datasetimport urllib.request
def download():
base = 'https://storage.googleapis.com/quickdraw_dataset/full/numpy_bitmap/'
for c in classes:
cls_url = c.replace('_', '%20')
path = base+cls_url+'.npy'
print(path)
urllib.request.urlretrieve(path, 'data/'+c+'.npy')
Since our memory is limited we will only load to memory 5000 images per classes. We also reserve 20% of the data unseen for testingdef load_data(root, vfold_ratio=0.2, max_items_per_class= 5000 ):
all_files = glob.glob(os.path.join(root, '*.npy'))
#initialize variables
x = np.empty([0, 784])
y = np.empty([0])
class_names = []
#load a subset of the data to memory
for idx, file in enumerate(all_files):
data = np.load(file)
data = data[0: max_items_per_class, :]
labels = np.full(data.shape[0], idx)
x = np.concatenate((x, data), axis=0)
y = np.append(y, labels)
class_name, ext = os.path.splitext(os.path.basename(file))
class_names.append(class_name)
data = None
labels = None
#separate into training and testing
permutation = np.random.permutation(y.shape[0])
x = x[permutation, :]
y = y[permutation]
vfold_size = int(x.shape[0]/100*(vfold_ratio*100))
x_test = x[0:vfold_size, :]
y_test = y[0:vfold_size]
x_train = x[vfold_size:x.shape[0], :]
y_train = y[vfold_size:y.shape[0]]
return x_train, y_train, x_test, y_test, class_names
[N, 28, 28, 1]
and outputs probabilities of the shape [N, 100]
# Reshape and normalize
x_train = x_train.reshape(x_train.shape[0], image_size, image_size, 1).astype('float32')
x_test = x_test.reshape(x_test.shape[0], image_size, image_size, 1).astype('float32')
x_train /= 255.0
x_test /= 255.0
# Convert class vectors to class matrices
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
# Define model
model = keras.Sequential()
model.add(layers.Convolution2D(16, (3, 3),
padding='same',
input_shape=x_train.shape[1:], activation='relu'))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Convolution2D(32, (3, 3), padding='same', activation= 'relu'))
model.add(layers.MaxPooling2D(pool_size=(2, 2)))
model.add(layers.Convolution2D(64, (3, 3), padding='same', activation= 'relu'))
model.add(layers.MaxPooling2D(pool_size =(2,2)))
model.add(layers.Flatten())
model.add(layers.Dense(128, activation='relu'))
model.add(layers.Dense(100, activation='softmax'))
# Train model
adam = tf.train.AdamOptimizer()
model.compile(loss='categorical_crossentropy',
optimizer=adam,
metrics=['top_k_categorical_accuracy'])
print(model.summary())
5
epochs and 256
batches with 10%
validation split#fit the model
model.fit(x = x_train, y = y_train, validation_split=0.1, batch_size = 256, verbose=2, epochs=5)
#evaluate on unseen data
score = model.evaluate(x_test, y_test, verbose=0)
print('Test accuarcy: {:0.2f}%'.format(score[1] * 100))
92.20%
top 5
accuracy.model.save('keras.h5')
we install the tfjs package for conversion!pip install tensorflowjs
then we convert the model!mkdir model
!tensorflowjs_converter --input_format keras keras.h5 model/
This will create some weight files and the json file which contains the architecture of the model.!zip -r model.zip model
finally download the modelfrom google.colab import files
files.download('model.zip')
300 x 300
. I will not go over the details of the interface and focus on TensorFlow.js part.<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@latest"> </script>
You will need a running server on your local machine to host the weight files. You can create an apache server or host the page on GitHub as I did on my project.model = await tf.loadLayersModel('model/model.json')
The await
keyword waits for the model to be loaded by the browser.//the minimum boudning box around the current drawing
const mbb = getMinBox()
//cacluate the dpi of the current window
const dpi = window.devicePixelRatio
//extract the image data
const imgData = canvas.contextContainer.getImageData(mbb.min.x * dpi, mbb.min.y * dpi,
(mbb.max.x - mbb.min.x) * dpi, (mbb.max.y - mbb.min.y) * dpi);
The getMinBox()
will be explained later. The variable dpi
is used to stretch the crop of the canvas according to the density of the pixels of the screen.function preprocess(imgData)
{
return tf.tidy(()=>{
//convert the image data to a tensor
let tensor = tf.browser.fromPixels(imgData, numChannels= 1)
//resize to 28 x 28
const resized = tf.image.resizeBilinear(tensor, [28, 28]).toFloat()
// Normalize the image
const offset = tf.scalar(255.0);
const normalized = tf.scalar(1.0).sub(resized.div(offset));
//We add a dimension to get a batch shape
const batched = normalized.expandDims(0)
return batched
})
}
For prediction we use model.predict
this will return probabilities of the shape [N, 100]
const pred = model.predict(preprocess(imgData)).dataSync()
We can then use simple functions to find the top 5 probabilities.[N, 28, 28,1]
. The drawing canvas we have is of size 300 x 300
which might be two large for drawings or the user might draw a small figure. It will be better to crop only the box that contains the current drawing. To do that we extract the minimum bounding box around the drawing by finding the top left and the bottom right points//record the current drawing coordinates
function recordCoor(event)
{
//get current mouse coordinate
var pointer = canvas.getPointer(event.e);
var posX = pointer.x;
var posY = pointer.y;
//record the point if withing the canvas and the mouse is pressed
if(posX >=0 && posY >= 0 && mousePressed)
{
coords.push(pointer)
}
}
//get the best bounding box by finding the top left and bottom right cornders
function getMinBox(){
var coorX = coords.map(function(p) {return p.x});
var coorY = coords.map(function(p) {return p.y});
//find top left corner
var min_coords = {
x : Math.min.apply(null, coorX),
y : Math.min.apply(null, coorY)
}
//find right bottom corner
var max_coords = {
x : Math.max.apply(null, coorX),
y : Math.max.apply(null, coorY)
}
return {
min : min_coords,
max : max_coords
}
}
jūlijs 02, 2018
—
Posted by Zaid Alyafeai
We will create a simple tool that recognizes drawings and outputs the names of the current drawing. This app will run directly on the browser without any installations. We will use Google Colab for training the model, and we will deploy it on the browser using TensorFlow.js.
Code and DemoFind the live demo and the code on GitHub. Also make sure to test the notebook on Googl…