rugpjūčio 24, 2020 —
Posted by the TensorFlow Team
When the TensorFlow YouTube channel launched in 2018, we had a vision to inform and inspire developers around the world about what was possible with Machine Learning. With series like Coding TensorFlow showing how you can use it, and Made with TensorFlow showing inspirational stories about what people have done with TensorFlow and much more, the channel has grown gre…
Introducing TensorFlow Videos for a Global Audience: Japanese
rugpjūčio 24, 2020
Posted by the TensorFlow Team
When the TensorFlow YouTube channel launched in 2018, we had a vision to inform and inspire developers around the world about what was possible with Machine Learning. With series like Coding TensorFlow showing how you can use it, and Made with TensorFlow showing inspirational stories about what people have done with TensorFlow and much more, the channel has grown greatly. But we learned an important lesson: it’s a global phenomenon, and to reach the world effectively, we should provide content in multiple languages with native speakers presenting. Check out the popular Zero to Hero series in Japanese!
TensorFlow で機械学習ゼロからヒーローへ
最近は、インターネットや新聞、本などを閲覧していると、嫌でも機械学習や AI のようなバズワードが目に入ってくるようになりました。様々な分野で話題になっているおかげで、たくさんの情報が見つかるようになっています。ですが、デベロッパーの視点から見た機械学習とは、一体どういう物なのでしょうか?TensorFlow チームに所属するロレンス・モローニは、その疑問に応えるため、Google I/O 2019 でした好評だったスピーチをベースに、4 部に及ぶ動画シリーズ「機械学習: TensorFlow でゼロからヒーローへ」を作成しました。
第一部では、Java や C++ で作成された具体的なルールに従って動く従来のプログラムと、データからルール自体を推測するシステムである機械学習の違いを学ぶことができます。機械学習とは、どのようなコードで構成されているのか?などの質問に応えるため、シンプルな具体例を使って、機械学習モデルを作成する手順を解説します。ここで語られるいくつかのコンセプトは、第二部の、コンピュータ ビジョンの動画でも応用されています。
Introducing TensorFlow Videos for a Global Audience: Japanese
rugpjūčio 24, 2020
—
Posted by the TensorFlow Team
When the TensorFlow YouTube channel launched in 2018, we had a vision to inform and inspire developers around the world about what was possible with Machine Learning. With series like Coding TensorFlow showing how you can use it, and Made with TensorFlow showing inspirational stories about what people have done with TensorFlow and much more, the channel has grown gre…